If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/2)=-16H^2+16H+32
We move all terms to the left:
(1/2)-(-16H^2+16H+32)=0
We add all the numbers together, and all the variables
-(-16H^2+16H+32)+(+1/2)=0
We get rid of parentheses
16H^2-16H-32+1/2=0
We multiply all the terms by the denominator
16H^2*2-16H*2+1-32*2=0
We add all the numbers together, and all the variables
16H^2*2-16H*2-63=0
Wy multiply elements
32H^2-32H-63=0
a = 32; b = -32; c = -63;
Δ = b2-4ac
Δ = -322-4·32·(-63)
Δ = 9088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9088}=\sqrt{64*142}=\sqrt{64}*\sqrt{142}=8\sqrt{142}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{142}}{2*32}=\frac{32-8\sqrt{142}}{64} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{142}}{2*32}=\frac{32+8\sqrt{142}}{64} $
| 5/6=x/180 | | 3x10=2x11 | | 5y+0.33=1.17 | | 5/6=x/150 | | 10t-7=6 | | 8(f-2)=4 | | 10+20x8=180 | | 6=10x-7 | | 25x+-5=10 | | 5(2x+4)+2(5x+1)=37 | | 5(2x+4)+2(5+1)=37 | | 5^3r-3=5^r+2 | | 25x^-16=0 | | 5^3r-1=625 | | 4w/5-4=20 | | 11-4(2x-9)=0 | | 55.2x+6=74.25 | | 3-(12+4x)=43 | | 1+-5x=-6x | | 3y+13=4y+(3y-7) | | (h+5)+(h+17)=180 | | 20=k/4 | | 11y+7y=y | | h+(h+30)=90 | | (7n+12)+(13n-16)+6n=360 | | 2x-16=4x+4 | | 2p/3-8=-2 | | -5k+11=-44 | | 3n=12-3 | | 11-q=-q+11 | | 9x+3=4x5 | | (11)/(10x)+(1)/(10)x=7x+(1)/(5)+(9)/(10)x |